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We study the chaotic dynamics which occurs in a nematic liquid crystal film during the director reorientation
induced by an intense optical field. We show the presence of intermittency in the fluctuations of the transmitted
light intensity polarized perpendicularly to the incident beam. The intermittency can safely be described by the
multifractal geometry, and, in this framework, we present a simple heuristic model for the phenomenon.
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The interaction of a nematic liquid crystal~NLC! with an
intense optical field can exhibit different features depending
on the experimental geometries used, i.e., the unperturbed
director orientation@1#, the light polarization, and the inci-
dence angle. This effect results in several oscillating diffrac-
tion rings ~which can be observed in the far field pattern of
the transmitted beam! in two different geometries:~1! When
a circularly or elliptically polarized light beam acts on a ho-
meotropically aligned NLC film at normal incidence@7#; and
~2! when a linearly polarized light beam impinges on a ho-
meotropically aligned NLC film at a small incidence angle,
and the light polarization is perpendicular to the incidence
plane@8,9#.

In previous papers@9# we reported the characterization of
a very interesting dynamical behavior observed in the latter
geometry, with a sample cell consisting in a thermally stabi-
lized (T518°C! film of E7. The dynamics of the molecular
director have been tracked by instantaneously detecting
I i(t) andI'(t) that are the intensities of the two components
in the center of the outgoing beam polarized parallel and
perpendicular to the polarization of the incident beam. The
light intensities are detected by two photodiodes, the ac-
quired time series of durationT5NDt consists of records of
N516 384 points that are sampled at fixed time interval
Dt50.1 s. A more detailed description of the experimental
setup and procedures are reported in Refs.@9#. In these pa-
pers we described the dynamical behavior followed by the
system which, as the incident power is increased, undergoes
an interesting route toward a state where the rings oscillate
chaotically.

In recent years another method has been introduced which
describes the fine structure of chaotic attractors in the phase
space. It consists of determining the multifractal structure of
the attractor, if any exists@2#. Multifractals has been intro-
duced to describe processes where anomalous scaling laws
are present. Among other main examples we include some
chaotic systems@3#, intermittent fluid flows@4,5#, and astro-
nomical systems@6#. For a review, see Ref.@2#. In the
present paper we show that intermittency, leading to anoma-
lous scaling laws, is present in the chaotic state observed in
our experiment, and that intermittency can be safely de-
scribed by the multifractal geometry. Our results, which can
be interpreted in the light of a simple toy model, represent a
testing bench for a theoretical investigation of light induced

reorientation in liquid crystals, thus opening a way to a
deeper understanding of the phenomenon.

Let us consider the time seriesI (t) of durationT in the
chaotic regime, and let us divide the whole duration into
disjoint subsetsTi,T of equal sizeDt. Then we can intro-
duce a probability measure through

PDt~Ti ,I !5E
tPTi

I ~ t !dtYE
0

T

I ~ t !dt, ~1!

where the integral in the numerator is extended to the times
belonging to thei th subset. Quantity~1! represents the prob-
ability of occurrence of a givenI (t) in a particular subset
Ti at the scaleDt, and is at the heart of our analysis. In
Figs. 1 we show the measure densitiesSDt(Ti ,I )
5(T/Dt)PDt(Ti ,I) vs thei th box, both forI i(t) andI'(t). It is
worth noting some peculiarities of Fig. 1~b! which are not
observable in Fig. 1~a!, and which show the main difference
betweenI i(t) and I'(t). First of all, fluctuations behave
similarly on different time scales. A peak in the curve calcu-
lated at highDt values tends to be resolved into two or more
peaks in the curve corresponding to smallerDt values. This
evidence of scale invariance is typical of a fractal structure.
On the other hand, the bursting behavior exhibited by
SDt(Ti ,I') on all time scales indicates that the system un-
dergoes large fluctuations in a small time interval. In fact,
Fig. 1~b! shows the presence in the observed signal of re-
gions characterized by high intensity over small time inter-
vals that are followed by regions of small intensity over large
time intervals. These trends indicate that fluctuations are in-
termittent in time rather than homogeneous. We can also
observe that fluctuations are asymmetric with respect to the
average intensity, thus reflecting a tail in the distribution, and
underlining that higher fluctuations are favored. Finally we
stress that fluctuations are larger on smaller scales. The in-
termittency is less evident in Fig. 1~a!, where fluctuations of
SDt(Ti ,I i) are still asymmetric, but the distribution tail is
less important, and negative fluctuations are favored.

The presence of a bursting structure in the densities is a
phenomenon which is common to intermittent processes, and
can safely be described by multifractal geometry. In the mul-
tifractal picture one introduces a set of singularities of
strengtha for the probability measurePDt(Ti ,I );(Dt/T)a

~the symbol; means that both sides of the equation have the
same scaling law! and then calculates the dimensionf (a) of
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the various iso-a sets. To emphasize the strongest spikes, we
look for the scaling exponentsk(q) of all the moments

(
i

@PDt~Ti ,I !#
q;~Dt/T!k~q! ~2!

~the sum is extended to all the subsetsTi). The scaling ex-
ponentsk(q) are related to the set of generalized dimensions

Dq5k(q)/(q21) @10#, and to the multifractal functions
(a, f ) through the relationsf (a)5qa2(q21)Dq and
a5d/dq@(q21)Dq# @2#.

Through Eqs.~1! and~2! we extract a direct measurement
of k(q) from our experimental data, in the range
210<q<10. Curvesk(q), calculated both forI'(t) and
I i(t) in Eq. ~1!, are reported in Fig. 2. We note that, while
the curve referring toI i(t) can be considered roughly linear
~at least within the experimental accuracy!, the curve refer-

FIG. 1. Time behavior ofSDt(I ,t) calculated both forI i and I' for different time intervalsDt.
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ring to I'(t) is nonlinear, thus indicating that only the attrac-
tor of I'(t) presents a multifractal structure. Since we have
already studied the global structure of the attractors both for
I i(t) andI'(t) @9#, in the following we restrict our attention
to this last quantity. The multifractal structure ofI'(t) is
described by the curvef (a) given in Fig. 3. As is shown, the
singularity spectrum assumes its maximum valuef (a).1
whena(q50).1.17, say the singularitya that lies in the
majority of the box is greater than 1. There are two charac-
teristic points of the curvef (a), say f (a51).0.97 ~which
is the dimension of the set where all the singularities are
located!, and f (a)5a5D1.0.90 ~which represents the di-
mension of the set where the measure concentrates asymp-
totically for Dt→0). Both sets are almost space filling. The
minimum value ofa, which corresponds tof (a)50, is

amin.0.43, and represents the Ho¨lder exponent correspond-
ing to the largest singularity. Moreover the dynamics shows
regions of latent singularities@11# defined byf (a),0 and
a.0. In our case this region occurs fora<0.43 and
a>2.34. The condition of negative dimension, as shown by
Mandelbrot, means that on average there is less than one box
in a sample corresponding to these values ofa. Finally, to
characterize the intermittency, it is useful to introduce the
intermittency exponentm as the rate of increase of the tails
of the probability distribution function with respect to a
Gaussian function@12#. The exponentm is closely related
@5# to the scaling exponents k(q) through m
52@d2k(q)/dq2#q50. In our case the intermittency expo-
nent holds almost highm.0.4860.04, thus showing a
strong intermittency. As a comparison, the intermittency ex-
ponent in the measurement of the dissipated energy in ordi-
nary fluid flows@5# results to bem.0.2660.03.

We would stress that, to our knowledge, our data analysis
represents the first experimental evidence of intermittency in
the study of the NLC molecular director reorientation, which
can be described by the multifractal geometry. Previous
theoretical approaches to the problem at hand face only the
linear regime in the phenomenon, and are then inadequate to
represent the richness we have found. In this sense our analy-
sis in terms of the probability measure on various scales
could open another way to a theoretical understanding of
molecular director reorientation. In fact, even if the phenom-
enon under examination is very complicated~as in our case!,
the gross features of the dynamical behavior can be achieved
by simple models. Let us consider the following example
which is intended only to illustrate qualitatively how the in-
teraction between radiation and director fields can produce
multifractal fluctuations ofI' . The optically induced reori-
entation of the molecular director can be interpreted in terms
of the exchange of the angular momentum and energy be-
tween the radiation and the NLC. Let us denote byQ(t) the
random time series involved in the physical process. Since
the phenomenon is in general nonlinear, we conjecture the
existence of a kind of not homogeneous ‘‘redistribution’’ of
Q(t) on different scales. This could be the source of inter-
mittency, as it happens in fluid flows for the energy flux@5#.
In fact if we introduce the subsetsTi at the various scales
t/T522n(n50,1,2,. . . ), the probability measureCt(Q)
derived fromQ(t) can be described through the product of
n breakage coefficients 0<x i,1,

Ct~Q!5)
i51

n

x i .

By supposing that the multipliersx i have a unique probabil-
ity distribution functionP(x), and that multipliers at the
nth level are statistically independent of those at the previous
level, the scaling exponentsk(q) of the various moments of
the probability measure can be immediately recognized to be

k~q!52 ln2H E xqP~x!dxJ .
This is the simplest form we can obtain for the scaling ex-
ponents~a more sophisticated approach can be done by re-
laxing the two assumptions we have made!. Although there

FIG. 2. Plot of the scaling exponentk(q) vs theqth power of
SDt(I ,t). Dark and white dots refer, respectively, toI' and I i .

FIG. 3. The singularity spectrumf (a) calculated forI' .
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are several chances forP(x), the simplest reliable form is
given in terms of the sum of twod functions in which the
breakage coefficient can assume only two values, sayp and
(12p). Then one obtains the usualp model

Dq5 ln2@p
q1~12p!q#/~12q!.

The parameter 0,p,1 gives a measure of the nonhomoge-
neity of the redistribution of the measure. Whenp5 1

2, the
process is not intermittent, andk(q) is linear inq. We have
made a fit of our data by this model~not shown here!, ob-
taining a good agreement in the range28<q<3 for the

best-fit valuep.0.19360.002, corresponding to a strong in-
termittent process@5#. Then in spite of our ignorance about
Q(t), the simple model provides a good agreement. Obvi-
ously this model, that is intended only to illustrate a suitable
approach to the problem, does not address the richest dy-
namic process involved in the experimental situations. An
attempt to look for a more satisfactory model in such a per-
spective is actually in progress and will be reported in a
future paper.

We are grateful to E. Santamato, G. Abbate, F. Simoni,
and N. V. Tabiryan for useful discussions.
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